HYDROGEN SPECTRUM

Bohr's model

Niels Bohr proposed a model for the hydrogen atom that explained the spectrum of the hydrogen atom. The Bohr model was based on the following assumptions.

- The electron in a hydrogen atom travels around the nucleus in a circular orbit.
- The energy of the electron in an orbit is proportional to its distance from the nucleus. The further the electron is from the nucleus, the more energy it has.
- Only a limited number of orbits with certain energies are allowed. In other words, the orbits are quantized.
- The only orbits that are allowed are those for which the angular momentum of the electron is an integral multiple of Planck's constant divided by 2π .

$$L = \frac{nh}{2\pi}$$
 (where h = planck's constant)

- Light is absorbed when an electron jumps to a higher energy orbit and emitted when an electron falls into a lower energy orbit.
- The energy of the light emitted or absorbed is exactly equal to the difference between the energies of the orbits
- When electron in an excited atom comes back from higher energy level (n₂) to lower energy level (n₁) then it emits a photon, having energy equal to difference in energy levels.

O
$$hv = \Delta E = En_2 - En_1$$

Wavelength or wave no. of any line of any one electron species can be calculated as

$$\frac{1}{\lambda} = R_H Z^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right], \quad \frac{hc}{\lambda} = \Delta E$$

Different series

Successes

- Combining successfully Rutherford's solar system's model, with the Planck hypothesis on the quantified energy states at atomic level and Einstein's photons
- atomic emission! and absorption spectra
- Explaining the ! o Explaining the ! o First general features ! of the periodic ! table
- working model for

 $n_f = 1$ $n_i = 2,3,4,5,...$ $n_i = 3,4,5,6,...$

ULTRAVIOLET ! VISIBLE

 $n_f = 2$

LYMAN SERIES | BALMER SERIES | PASCHEN SERIES

 $n_f = 3$

 $n_i = 4,5,6,7,...$

INFRARED

BRACKETT SERIES !

 $n_f = 4$

 $n_i = 5,6,7,...$

INFRARED

PFUND SERIES

 $n_f = 5$

 $n_i = 6,7,...$

HUMPHREY SERIES

 $n_f = 6$

 $n_i = 7.8,...$

FAR INFRARED! FAR INFRARED